Показательные уравнения и неравенства

Решить уравнение (2-12).

2.
$$\boxed{3}$$
 0,3^{5 - 2x} = 0,09.

$$3. \boxed{4} \left(\frac{1}{5\sqrt{5}}\right)^x = \sqrt[3]{5}.$$

4. 4
$$225 \cdot 15^{2x+1} = 1$$
.

5.
$$\boxed{5}$$
 $43^x = 8^{2x}$.

6.
$$\boxed{5} \ 3^{x-2} - 3^{x-3} = 6$$
.

6.
$$5 \ 3^{x-2} - 3^{x-3} = 6$$
. 7. $4 \ 25^x + 4 \cdot 5^x - 5 = 0$.

8.
$$\boxed{4} \ 4^x - 12 \cdot 2^x + 32 = 0.$$
 9. $\boxed{5} \ 2^{\sqrt{x^2+1}} = 8.$

9.
$$\boxed{5} \ 2^{\sqrt{x^2+1}} = 8.$$

10. 6
$$(0,2)^{x^2} \cdot 5^{2x+2} = \left(\frac{1}{5}\right)^6$$
. 11. 5 $2 \cdot 9^x - 17 \cdot 3^x = 9$.

11.
$$\boxed{5} \ 2 \cdot 9^x - 17 \cdot 3^x = 9$$
.

Решить неравенство (1-5).

$$1. \ \boxed{3} \left(\frac{2}{3}\right)^x > 1\frac{1}{2}.$$

2.
$$\boxed{4} 9^{2x} \leqslant \frac{1}{3}$$

1.
$$\boxed{3} \left(\frac{2}{3}\right)^x > 1\frac{1}{2}$$
. 2. $\boxed{4} 9^{2x} \le \frac{1}{3}$. 3. $\boxed{4} \left(\frac{1}{7}\right)^{x^2-9} \le 1$.

4.
$$\boxed{5}$$
 $4^x + 2^{x+1} - 80 < 0.$ $\boxed{5}$ $\boxed{6}$ $\left(\frac{1}{3}\right)^{\frac{1}{x}} < \frac{1}{27}.$

$$5. \ \boxed{6} \left(\frac{1}{3}\right)^{\frac{1}{x}} < \frac{1}{27}$$

Логарифмические уравнения и неравенства

Решить уравнение (8-24).

8. 4
$$\lg(x+\sqrt{3}) + \lg(x-\sqrt{3}) = 0$$
.

9. 4
$$\log_2(x-2) + \log_2(x-3) = 1$$
.

10. 4
$$\lg(x^2-9) - \lg(x-3) = 0$$
.

11.
$$\boxed{4} \log_6(x-1) - \log_6(2x-11) = \log_6 2$$
.

12.
$$5 \log_7(2x^2 - 7x + 6) - \log_7(x - 2) = \log_7 x$$
.

13.
$$\boxed{5} \log_4(x^3 - x) - \log_4 x = \log_4 3$$
.

14.
$$\boxed{5} \log_2 \frac{2}{x-1} = \log_2 x$$
. 15. $\boxed{5} \lg \frac{x+8}{x-1} = \lg x$.

15.
$$\boxed{5} \lg \frac{x+8}{x-1} = \lg x$$

16. 6
$$\frac{1}{2}$$
 lg($x^2 + x - 5$) = lg($5x$) + lg $\frac{1}{5x}$.

17.
$$\boxed{7} \log_3(x-1) + 2\log_9(17+x) = 7 + \log_{\underline{1}}9.$$

18.
$$\boxed{8} \log_3 x + \log_{\sqrt{x}} x - \log_{\frac{1}{2}} x = 6.$$

19. 4
$$\log_{0.7} \log_4 (x-5) = 0$$
.

19. 4
$$\log_{0.7} \log_4(x-5) = 0$$
. **20.** 5 $\log_{13} \log_3 \log_2(x^2+2x) = 0$

21.
$$\boxed{4} \log_{0,5}^2 x - \log_{0,5} x - 2 = 0.$$

22.
$$\boxed{4} \log_2^2(1-x) - 2 \log_2(1-x) = 3.$$

23.
$$\boxed{5}$$
 $2\log_2 x = 3\log_3 x$.

23.
$$\boxed{5}$$
 $2 \log_2 x = 3 \log_3 x$. **24.** $\boxed{6}$ $2 \log_2 x - 5 \log_x 2 = 3$.

Решить неравенство (5-38).

5.
$$\boxed{3} \log_2 x > 3$$
.

6.
$$\boxed{3} \log_2 x < 3$$
.

7.
$$\boxed{3} \log_{\frac{1}{2}}(x+7) > -3$$
.

8.
$$\boxed{3} \log_{\frac{1}{2}}(x+7) < -3.$$

9.
$$\boxed{4} \log_2^2(x^2+x+2) > 3.$$

10.
$$\boxed{4} \log_2^2(x^2+x+2) < 3$$
.

11.
$$\boxed{4} \log_2(x^2 - 4x + 3) > 3$$
.

12. 4
$$\lg (2x - 3) \ge \lg (3x - 5)$$
.

Тригонометрические уравнения

Решите уравнение
$$-\sqrt{2}\sin\left(-\frac{5\pi}{2}+x\right)\cdot\sin x = \cos x$$
.

Решите уравнение
$$\cos\left(\frac{\pi}{2} + 2x\right) = \sqrt{2}\sin x$$

Решите уравнение
$$2\cos\left(\frac{\pi}{2}-x\right)=\operatorname{tg}x$$
.

Решите уравнение
$$2\cos\left(x - \frac{11\pi}{2}\right) \cdot \cos x = \sin x$$
.

Решите уравнение
$$\cos 2x - \sqrt{2}\cos\left(\frac{3\pi}{2} + x\right) - 1 = 0.$$

Решите уравнение
$$2\cos 2x + 4\sqrt{3}\cos x - 7 = 0$$
.

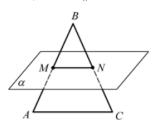
Решите уравнение
$$2\cos 2x + 4\cos \left(\frac{3\pi}{2} - x\right) + 1 = 0.$$

8. Решите уравнение
$$8\sin^2 x + 2\sqrt{3}\cos x + 1 = 0$$
.

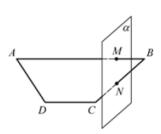
Решите уравнение
$$2\sqrt{3}\cos^2\left(\frac{3\pi}{2}+x\right)-\sin 2x=0$$
.

10. Решите уравнение
$$\sin 2x + 2\sin^2 x = 0$$
.

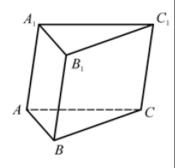
Решите уравнение
$$\cos 2x - 3\cos x + 2 = 0$$
.


12. Решите уравнение
$$2\cos^3 x - \cos^2 x + 2\cos x - 1 = 0$$
.

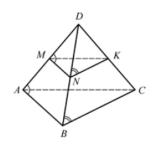
13. Решите уравнение
$$\cos 2x + 3\sin x - 2 = 0$$
.


Решите уравнение
$$\cos 2x - \sin^2 \left(\frac{\pi}{2} - x\right) = -0.25$$
;

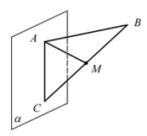
Геометрия


1. Дано: $\triangle ABC$, $AB \cap \alpha = M$, $BC \cap \alpha = N$, $AC \parallel \alpha$. Докажите, что $AC \parallel MN$.

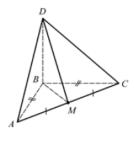
3. Дано: ABCD — трапеция, $AB \cap \alpha = M$. Докажите, что $DC \cap \alpha$.

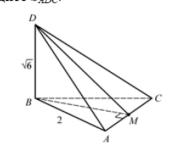


Докажите, что ^{AB÷CC}₁.

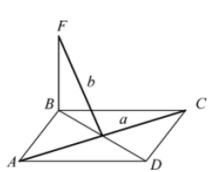


Докажите, что $(ABC) \parallel (MNK)$.

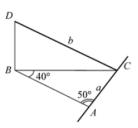

 $4. \angle BAD = \angle NMD, \\ \angle CBD = \angle KND.$


9. Дано: $AB \perp \alpha$, $AC \in \alpha$, M- середина CB, AC = 6, AB = 8. Найдите AM.

1. Дано: $\triangle ABC$, $BD \perp (ABC)$, AB = BC, AM = MC. Докажите, что $AC \perp (BDM)$.



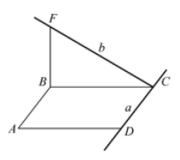
1. Дано: ΔABC — равносторонний, $AB=2,\,BD\perp(ABC),\,BD=\sqrt{6}\,\,.$ Найдите $S_{ADC}.$



Установите, перпендикулярны ли прямые a и b.

3. ABCD — прямоугольник, $FB \perp (ABC)$.

5. $BD \perp (ABC)$, $\angle ABC = 40^\circ$, $\angle BAC = 50^\circ$.



Установите, перпендикулярны ли прямые a и b.

7. $ABCDA_1B_1C_1D_1$ — куб.

2. ABCD — параллелограмм, $FB \perp (ABC)$.

Вероятность и статистика

1	Две фабрики выпускают одинаковые стёкла для автомобильных фар. Первая фабрика выпускает 30 % этих стёкол, вторая — 70 %. Первая фабрика выпускает 5 % бракованных стёкол, а вторая — 4 %. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
3	В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,25. Вероятность того, что кофе закончится в обоих автоматах, равна 0,1. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.
5	Биатлонист 4 раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,6. Найдите вероятность того, что биатлонист первые 2 раза попал в мишени, а последние два промахнулся. Результат округлите до сотых.
8	Игральный кубик бросили один или несколько раз. Оказалось, что сумма всех выпавших очков равна 3. Какова вероятность того, что было сделано два броска? Ответ округлите до сотых.
9	Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,3. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.
11	В классе 26 учащихся, среди них три подружки — Оля, Аня и Юля. Класс случайным образом разбивают на две равные группы. Найдите вероятность того, что все три девочки окажутся в одной группе.